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Abstract

The effect of a time-dependent gravity vector with a double frequency on the thermal stability of a fluid layer is

explained physically and by way of a calculation. The analogy of this problem to the time-dependent acceleration of the

base plate or pivot of a simple linear pendulum is made clear. Specifically it is shown that if a fluid layer that is heated

from below is unstable to a time-dependent gravity field for two different frequencies, it may regain stability if both

frequencies act in concert with each other. � 2002 Elsevier Science Ltd. All rights reserved.

1. Background and physics

It is well known [1] that there is an onset of convection

when a layer of fluid, erstwhile quiescent, is heated from

below under a constant gravitational field, provided that

the temperature difference exceeds a critical value. This

happens because the density is higher in the cold upper

region and the fluid arrangement is top heavy. The only

stipulation for the convection to set in from an erstwhile

quiescent state is that the gravitational vector be collin-

ear to the imposed temperature gradient. Otherwise the

fluid will be in constant motion no matter how small the

temperature difference. This stipulation continues to be

true even if the gravitational field is time-dependent [2].

The critical conditions that determine the marginal sta-

bility boundary between the quiescent and convective

states depend upon the frequency and magnitude of the

gravitational field or the ‘g’ vector [3,4]. In fact, in a fluid

layer, which is heated from below, the arrangement gains

stability for a given frequency for a certain amplitude of

the periodic component of the g vector and loses the

stability once again for very high amplitudes. This curi-

ous situation can be understood, better, by considering

the physics of an unstable pendulum whose base plate is

subjected to a time-dependent displacement in the di-

rection of gravity. The analogy between the fluid prob-

lem and the pendulum problem will be brought out in

this paper time and again. In this regard turn to Fig. 1.

Imagine a pendulum hanging upward from a pivot

i.e., with the bob upward. Now let the pivot of this

pendulum move only in the vertical direction in a time-

periodic manner. As gravity acts downward, the pen-

dulum is normally unstable. But the motion of the pivot

can make this pendulum stable. To see why this is so,

observe that small perturbations acting on the pendulum

bob will cause it to accelerate downward. If the base

plate is also made to accelerate downward fast enough

one can imagine a regaining of stability with the pen-

dulum bob now moving back upward with respect to an

observer sitting on the base plate. However a very fast

acceleration of the base plate can cause the pendulum

bob to overshoot its equilibrium position at the top and

regain its instability. In other words, in pure physical

terms one can imagine that there is a limited range of

amplitudes and frequencies of the base plate acceleration

wherein the pendulum bob is stable. Like Gresho and

Sani [2], we shall see later on that the equations that

model fluid convection resemble the equation that

models the pendulum-oscillatory base plate system.

Consequently it is understandable that there must be a

range of amplitudes and frequencies of the time-depen-

dent part of the gravity vector for which the fluid system

is stable.
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Now consider the reverse situation, i.e., the case of a

stable pendulum. Here too, there is an analog to the

fluid problem, this time however we imagine the fluid

layer to be heated from above. If the pendulum is in its

stable configuration, that is, a bob hanging below the

base plate, a small frequency and amplitude of the base

plate cannot really affect the stability of the arrange-

ment. However if the amplitude was increased substan-

tially for a given frequency one can imagine the bob

amplitude increasing with time. One cannot foresee the

possibility of the bob regaining stability for higher am-

plitudes of the plate motion unless perhaps a second

frequency is imposed. This then takes us to the main

theme of this paper.

The focus of this study is to extend the logic of the

pendulum analog to the fluid convection problem where

more than one frequency and amplitude can interact.

Earlier studies show that at very high frequencies the

gravity vector can be treated as nearly constant [5]. We

do not make this assumption here. Instead the focus of

this study is to analyze a model of fluid convection with

a time-dependent gravitational field and to compare an

analytical derivation with a numerical result for the

case of a double frequency. We then show that a fluid

layer that is heated from above may become unstable in

a window of frequencies and amplitudes. In particular

Nomenclature

a wave number

FC Floquet coefficient

gðtÞ time-dependent gravitational field

gdc fixed component of gravitational field

gac alternating component of gravitational field

l length of a pendulum

L height of fluid layer

P pressure

Pr Prandtl number m=j
r ratio of two frequencies

Ra thermal Rayleigh number gbDTL3/mj
Raac thermal Rayleigh number due to the time-

dependent gravitational field gacbDTL3=mj
Radc thermal Rayleigh number due to the con-

stant gravitational field gdcbDTL3=mj
t time

T temperature

T reference temperature
~VV velocity vector

V characteristic velocity

Greek symbols

s time constant

sjm mechanical disturbance time constant

std thermal disturbance time constant

sbouyancy buoyancy time constant

x angular frequency

x0 angular frequency of a pendulum with

length l

j thermal diffusivity

m kinematic viscosity

bT coefficient of thermal expansion

q density of fluid

q0 reference density

d transformed variable defined in the text

/ transformed variable defined in the text

e relative magnitude of time-dependent grav-

itational field gac=gdc

k transformed variable defined in the text

Superscript

� scaled values

Subscripts

b bottom plate

t top plate

dc fixed component

ac changing component

Fig. 1. Analogy between the stability of fluid layer, heated from

below or top and confined between two parallel plate, and the

stability of pendulum hanging upward or downward.
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we show by a combination of analysis and computa-

tions that a system, that is individually unstable for

two sets of amplitudes and frequencies, may actually

become stable when the two sets act in concert with each

other. To understand this better we move on to the

model.

2. The model for the fluid layer

The model considered here is a layer of fluid confined

between two horizontal parallel plates which are main-

tained at different but uniform temperatures. The entire

arrangement is then subjected to a time-dependent

gravitational field. Fig. 1 is a depiction of the physical

problem being studied. The plates, the lower one at

temperature Tb and the upper one at temperature Tt are

assumed to be unbounded in the horizontal direction.

The equations that model convection are written as-

suming that the density alone changes with temperature,

its variation being of importance only where it occurs

alongside an external acceleration. The equations of

motions are then

q0

o~VV
ot

þ q0
~VV � r

� �
~VV ¼ �rp þ lr2~VV

þ q0 1

�
þ 1

q0

oq
oT

����
T

T
�

� T
��

gðtÞ~FF

ð1Þ

where ~FF ¼ ð0; 0; 1Þ, ~VV , T and P are the solenoidal ve-

locity, temperature and pressure fields respectively and

q0 and T are the reference density and temperature while

gðtÞ is the time-dependent gravitational field. The

equation of energy is written assuming that viscous heat

dissipation is unimportant. It takes the form

oT
ot

þ ~VV � rT ¼ jr2T ð2Þ

The scaling of the equations depends largely on

whether or not the dissipation effect of the kinematic

viscosity exceeds that of thermal diffusivity. This then

sets the scaling for velocity and time. The temperature

scale on the other hand depends only on the temperature

difference between the hot plate and the cold plate and is

set such that the scaled temperature difference is unity,

while the depth of the fluid, L, is chosen to be the length

scale. Pretending that the kinematic viscosity, m, is much

less than the thermal diffusivity, j, as typical of liquid

metals, that is pretending that the Prandtl number is

much less than unity, we get the characteristic velocity to

be V ¼ m=L and the characteristic time to be �tt ¼ L2=m.

This then yields the following scaled equation of motion

o~VV
ot

þ ð~VV � rÞ~VV ¼ �rP þr2~VV þ RaðtÞ
Pr

T~FF ð3Þ

The scaled energy equation is then

Pr
oT
ot

þ Pr ~VV � rT
� �

¼ r2T ð4Þ

Here the Prandtl number, Pr, is m=j and

RaðtÞ ¼ gðtÞbDTL3

mj
where b ¼ � 1

q0

@q
@T

jT and

DT ¼ Tb � Tt

Before going on it is worth reminding ourselves that

RaðtÞ ¼ Radc þ RaacðtÞ, where Radc is the Rayleigh

number based on the constant gravitational field while

Raac is the corresponding Rayleigh number for a time-

dependent gravitational field. Moreover it is possible to

view the Rayleigh number as the product of the ratio of

time constants. If sjm, and std are the time constants for

the decay of mechanical and thermal disturbances and

sbuoyancy is the time constant for the decay of the buoy-

ancy effect, then Radc ¼ sjmstd=s2
buoyancy, where

sjm ¼
L2

m
; std ¼ L2

j
and s2

buoyancy ¼
L

gð� 1
q0

oq
oT jTDT Þ

The modeling equations, which are nonlinear because of

the interaction between ~VV and T, are linearized about

the quiescent state. One then assumes that ~VV ¼
~VV1 expðikxxÞ expðikyyÞ and that T ¼ T1 expðikxxÞ expðikyyÞ
with k2

x þ k2
y ¼ a2 to get

o

ot
o2

oz2

�
� a2

�
Vz1 ¼

o2

oz2

�
� a2

�2

Vz1 �
RaðtÞa2

Pr
T1 ð5Þ

and

Pr
oT1

ot
¼ PrVz1 þ

o2

oz2

�
� a2

�
T1 ð6Þ

Eliminating Vz1, the perturbed vertical component of

velocity in favor of T1 yields

o2

oz2

�
� a2

�
€TT1 �

o2

oz2

�
� a2

�2

1

�
þ 1

Pr

�
_TT1

þ 1

Pr
o2

oz2

�
� a2

�3

T1 þ
RaðtÞa2

Pr
T1 ¼ 0 ð7Þ

where the overdot represents a derivative with respect to

time.

Taking the special case of stress free horizontal

boundaries simplify the calculations henceforth and this

only requires that T1 ¼ T1ðtÞ sinðpzÞ. The model then

becomes

€TT1ðtÞ þ p2
�

þ a2
�

1

�
þ 1

Pr

�
_TT1ðtÞ þ

ðp2 þ a2Þ2

Pr
T1ðtÞ

� RaðtÞa2

Pr a2 þ p2ð Þ T1ðtÞ ¼ 0 ð8Þ
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This equation already resembles the equation that

models a pendulum with frictional damping. On letting

T1ðtÞ ¼ /ðtÞ expð�1=2ðp2 þ a2Þð1 þ ð1=PrÞÞtÞ, the result-

ing equation viz.

€// þ
"
� a2 þ p2ð Þ2

4
1

�
� 1

Pr

�2

� RaðtÞa2

Pr a2 þ p2ð Þ

#
/ ¼ 0

ð9Þ

assumes the form known as the Mathieu equation.

Let RaðtÞ ¼ Radcð1 þ e1 cosðx�
1tÞ þ e2 cosðx�

2tÞÞ where

x�
1 and x�

1 are the dimensionless angular frequencies of

the g field and x’s are the unscaled frequencies. Substi-

tuting this into the above along with x�
1t ¼ 2s and

r ¼ x�
2=x

�
1 ¼ x2=x1 yields

€// þ
"
� a2 þ p2ð Þ2

m2

x2
1L4

1

�
� 1

Pr

�2

� 4Radca2m2

Pr a2 þ p2ð Þx2
1L4


 ð1 þ e1 cosð2sÞ þ e2 cosð2rsÞÞ
#
/ ¼ 0 ð10Þ

The overdots now represent derivatives with respect to s.

If Pr � 1, Eq. (10) assumes the form

€// þ
"
� a2 þ p2ð Þ2

j2

x2
1L4

ð1 � PrÞ2 � 4RadcPra2j2

a2 þ p2ð Þx2
1L4


 ð1 þ e1 cosð2sÞ þ e2 cosð2rsÞÞ
#
/ ¼ 0 ð11Þ

In shorthand the model is

€// þ d2
�

þ 2k1 cosð2sÞ þ 2k2 cosð2rsÞ
�
/ ¼ 0 ð12Þ

where for low Pr number

d2 ¼ � a2 þ p2ð Þ2
m2

x2
1L4

1

�
� 1

Pr

�2

� 4Radca2m2

Pr a2 þ p2ð Þx2
1L4

ð13Þ

k1 ¼ � 2Radca2m2e1

Pr a2 þ p2ð Þx2
1L4

and k2 ¼ � 2Radca2m2e2

Pr a2 þ p2ð Þx2
1L4

ð14Þ

and for high Pr these constants become

d2 ¼ � a2 þ p2ð Þ2
j2

x2
1L4

ð1 � PrÞ2 � 4Radca2j2Pr
a2 þ p2ð Þx2

1L4
ð15Þ

k1 ¼ � 2RadcPra2j2e1

a2 þ p2ð Þx2
1L4

and k2 ¼ � 2RadcPra2j2e2

a2 þ p2ð Þx2
1L4

ð16Þ

While these constants might appear to take large

values when the Prandtl number is allowed to become

very high or very low, a careful inspection of Eqs. (13)–

(16) will reveal that as long as neither m=x1L2 nor j=x1L2

is large, and this is a reasonable assumption, no diffi-

culty will arise. Now several observations are worth

making at this stage about this last second-order dif-

ferential equation, i.e., Eq. (12).

First of all, if d2 > 0, the problem corresponds to the

heated from above case and looks like the model for the

normal or stable pendulum where in that case

d2 ¼ x2
0=x

2 where x0 ¼
ffiffiffiffiffiffiffi
g=l

p
with l being the length of

the string that attaches the pendulum bob to the base

plate. However if d2 < 0 then two possibilities arise.

Either the fluid can be heated from below or it may be

heated from above, but not excessively. But if Pr ¼ 1

then d2 < 0 must correspond to the heated from below

configuration only.

Second, if one lets k2 ¼ 0 and Pr ¼ 1 and in partic-

ular takes the case of d2 > 0, then if d2 ¼ 1; 4; 9 . . ., a

resonance is setup and / becomes unbounded. This is a

well established result [6]. Now it turns out that

d2 ¼ 4a2

ða2 þ p2Þ
s2

td

s2
jm

� �
s2

imposed

s2
buoyancy

and as Pr ¼ 1;

d2 ¼ 4a2

ða2 þ p2Þ
s2

imposed

s2
buoyancy

This is interesting by itself for we learn that as long as

Pr ¼ 1 it does not matter how kinematically viscous or

thermally diffusive a fluid is for it will become unstable

when d2 takes a resonant value n2 with ‘n’ being a pos-

itive integer.

Third, if d2 > 0, observe that as long as the thermal

expansion coefficient, b, is fixed, and the frequency of

oscillation of gravity is fixed, the fluid layer will become

unstable at precisely the same temperature difference

DT no matter how viscous or diffusive it might be pro-

vided that Pr ¼ 1. Contrast this with the fluid layer

heated from below for the case of a constant gravita-

tional field. Here DT for instability will depend on the

actual value of the thermal diffusivity and kinematic

viscosity.

Fourth, note that the lowest value of d2 is unity for

the heated from above problem to resonate. This then

translates into 4a2=ða2 þ p2Þ ¼ s2
buoyancy=s

2
imposed. In turn,

this means that, as ‘a’ becomes larger, the imposed fre-

quency of oscillation must be twice the ‘buoyancy’ fre-

quency for resonance to occur. This is similar to

requiring x ¼ 2
ffiffiffiffiffiffiffi
g=l

p
for resonance in the case of a

stable pendulum.

Finally, observe that when Pr 6¼ 1 and Radc < 0 such

that d2 < 0 then d2ðPr 6¼ 1Þ < d2ðPr ¼ 1) and the second-

order equation for / acts like a pendulum with frictional

damping, whereas the case of Pr ¼ 1 gives the equation

that resembles the undamped pendulum. It is our view

that by putting Pr 6¼ 1, the smaller of the two effects,

viscosity and thermal diffusivity, limit the effect of the

other and ultimately cause faster decay of the distur-

bances than in the case where they are of equal magni-

tude.
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To understand what happens when the time-depen-

dent acceleration is composed of two different frequen-

cies with two different amplitudes, we must analyze the

second-order equation with a modification made on the

time-dependent coefficients and it is to this task that we

now turn.

3. The ‘/ ’ equation with a double frequency

The second-order equation that determines / when

the time-dependent acceleration is made up of two

terms, one for each frequency is

€// þ d2
�

þ 2k1 cosð2sÞ þ 2k2 cosð2rsÞ
�
/ ¼ 0 ð17Þ

Here ‘r’ is the ratio of the two frequencies and need not

be an integer. This equation called the Mathieu equation

for two frequencies gives the behavior of / with respect

to d i.e., behavior that we are most interested in. If we

find that / becomes singular for certain d2 then it must

mean that T becomes singular. We already know that T
is singular when d2 ¼ 1; 4; . . ., for the single frequency

case. This singularity cannot be corrected by merely

multiplying / by expð�1=2ðp2 þ a2Þð1 þ ð1=PrÞÞtÞ. The

reason for this is that the singularity is greater than any

exponential order. We now ask whether these ideas

carry over to the multiple frequency case or if anything

else unusual occurs. To answer this question we turn to

the case of d2 > 0. Our interest resides in understanding

how / behaves as the frequency and magnitude of the

acceleration change. An analytical derivation is ad-

vanced for this special case of d2 > 0 so that it may serve

as a check to a numerical calculation for the case of the

fluid being heated from above. The same numerical

calculation is then used to obtain the behavior of / for

the heated from below case for which we have no

analogous analytical result.

To go on and investigate the behavior of /, expand it

and d2 in terms of k1 about d2 ¼ d2 where d2 is either n2,

n being an integer or where d2 ¼ n2r2. As an example,

suppose that d2 ¼ n2 and n ¼ 2 then

/ðt; k1Þ ¼ /0ðtÞ þ k1/1ðtÞ þ k2
1/2ðtÞ þ � � � ð18Þ

d2 ¼ 4 þ k1d1 þ k2
1d2 þ � � � ð19Þ

If k1 is related to k2 such that k2 ¼ mk2
1 then the above

expansion for / and d2 when substituted into the Mat-

hieu equation yields

€//0 þ k1
€//1 þ k2

1
€//2 þ �� �þ 4

�
þ k1d1 þ k2

1d2 þ�� �
�


 /0

�
þ k1/1 þ k2

1/2 þ�� �
�
þ 2k1 cos2t /0

�
þ k1/1

þ k2
1/2 þ �� �

�
þ 2mk2

1 cos4t /0

�
þ k1/1 þ k2

1/2 þ �� �
�
¼ 0

ð20Þ

On equating the coefficients of like powers of k1 we

obtain €//0 þ 4/0 ¼ 0 which yields /0 ¼ a cos 2t þ b sin 2t
and

€//1 þ 4/1 ¼ �d1ða cos 2t þ b sin 2tÞ � 2ða cos 2t

þ b sin 2tÞ cos 2t:

As /1 must be bounded we see that d1 ¼ 0 and a par-

ticular solution for /1 is then

/1 ¼ � a
4
þ a

12
cos 4t þ b

12
sin 4t: ð21Þ

Like wise

€//2 þ 4/2 ¼ �d2ða cos 2t þ b sin 2tÞ �
�
� a

2
cos 2t

þ a
12

ðcos 6t þ cos 2tÞ þ b
12

ðsin 6t

þ sin 2tÞ

� m aðcos 6t½ þ cos 2tÞ

þ bðsin 6t � sin 2tÞ� ð22Þ

and the boundedness of /2 requires that

ad2 �
5a
12

þ ma ¼ 0

and

bd2 þ
b
12

� mb ¼ 0

from which either a ¼ 0 or d2 ¼ ð5=12Þ � m and either

b ¼ 0 or d2 ¼ �ð1=12Þ þ m. Noting that both a and b
cannot be simultaneously zero and assuming the first

possibility leads to

d2 ¼ 4 � 1
12
k2

1 þ mk2
1

Assuming the second possibility leads to

d2 ¼ 4 þ 5
12
k2

1 � mk2
1

These two relationships for d2 and k1 are the loci along

which the solution of the Mathieu equation i.e., /, is

periodic in nature and bounded in time. This is graphed

for the particular case when k1 ¼ k2 i.e., when m ¼ 1=k1.

Notice that two curves depicted in Fig. 2 result. One

curve results from

d2 ¼ 4 � 1
12
k2

1 þ k1

while the other comes out of

d2 ¼ 4 þ 5
12
k2

1 � k1

Now, we may wonder whether there is any real restric-

tion by assuming that k2 ¼ mk2
1. In fact one could very

well have written k2 ¼ mk1 and proceeded with the cal-

culation much as above and then let m ¼ 1 to obtain a

new result. In such a case the k1 and d2 curve would still
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look much like Fig. 2. In fact while the accuracy of the

form is unknown, the actual relationship between k1 and

d2 turns out to be invariant to the relationship assumed

between k1 and k2 provided that k1 and k2 are both

small. As mentioned earlier, the purpose of providing

the solution of / by the expansion method shown above,

is to offer a check on a numerical calculation that will be

presented. This numerical solution also gives the rela-

tionship between k1 and d2 such that / does not become

unbounded. It tells us where /ðtÞ is stable, where it is

unstable and how it decays or grows with time. It is to

the task of obtaining a numerical solution that we now

turn.

The method that gives us this information is that of

Floquet coefficients [6]. In this method, the stability of

the solutions to the Mathieu equation, /, are obtained

by introducing a Floquet coefficient, c, such that / is

proportional to expðcsÞ i.e., exp cx�
1t=2

� �
. Note here that

x�
1 and t are the scaled angular frequency and time re-

spectively. Thus if c is positive the solution, /, to the

Mathieu equation is unstable and neutral stability is

obtained only if c is zero. However our model is con-

cerned with the temperature perturbation T1 and just

because / is unstable and grows, it does not mean that

T1 is unstable and grows. In fact recall for Pr � 1 that

T1ðtÞ ¼ /ðtÞ exp

�
� 1

2
ðp2 þ a2Þ 1

�
þ 1

Pr

�
t
�
:

This motivates us to introduce a modified Floquet co-

efficient hereafter called FC and given by

FC ¼ c
x1L2

2m
� 1

2
a2
�

þ p2
�

1

�
þ 1

Pr

�
for Pr � 1 ð23Þ

and

FC ¼ c
x1L2

2j
� 1

2
a2
�

þ p2
�
ð1 þ PrÞ for Pr � 1 ð24Þ

Once again note that x1 is an unscaled angular fre-

quency. If FC > 0 the instability of the temperature

equation is guaranteed. If FC < 0 the temperature

equation is conditionally stable to infinitesimal distur-

bances. Fig. 3 is a depiction of the stability curves where

k1 is graphed against d2 with c as a parameter. Given a

fluid depth and physical properties and frequency of

gravity one can compute d2 and k1 and thereafter ob-

taining c from Fig. 3. In turn this gives us FC and tells us

whether T1 is stable or not. For regions of positive d2,

Fig. 3 also can be compared with the analytical result

plotted in Fig. 2 and one immediately sees that the

comparison is favorable in the region of positive d2. This

gives credence to the numerical result. In all our calcu-

lations we found c to be real. Consequently the mode of

oscillation at the neutral stability is always equal to the

imposed frequency. To glean more from the calculations

requires us to present some cases where the effect of

Prandtl and Rayleigh numbers are seen on the stability

of the fluid flow.

4. Discussion

Two sets of calculations have been performed and

will be presented here. The first is for the case of the fluid

layer heated from above and the second is for the situ-

ation where the fluid layer is heated from below.

Fig. 2. Analytical solution of Mathieu solution for d2 ¼ 4. The

inside region of the curve represents the stable solution while

outside region has unstable solution.

Fig. 3. Depiction of the stability curves for k1 vs. d2 with c as a

parameter. c is obtained by solving the Mathieu equation nu-

merically through the method of FC.
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The calculations presented here, assume the spatial

wave number to be p=
ffiffiffi
2

p
. This is, in fact, the critical

wave number [1] when Ra is 27p4=4 and the sidewalls are

stress free with the top and bottom boundaries con-

ducting. The calculations were done for different Ray-

leigh numbers and Prandtl numbers and in so doing the

value of L was chosen to be 5 cm, with the values of m
and j corresponding to liquid tin (Pr ¼ 0:08) and water

(Pr ¼ 7:0). The kinematic viscosity and thermal diffu-

sivity for liquid tin are m ¼ 0:24 
 10�6 m2=s and

j ¼ 3:0 
 10�6 m2=s while for water they have been as-

sumed to be m ¼ 1:0 
 10�6 m2=s and j ¼ 0:14

10�6 m2=s. It may be observed that when Ra ¼ �1000

and Pr ¼ 0:08, the gdc is 13:1lg (1lg ¼ 9:8 
 10�6 m2/s)

with a temperature drop of 15.2 �C whereas when

Pr ¼ 7, the gdc is 46:0lg. This observation is interesting

in the light of the fact that the gravity level aboard a low

gravity orbiter such as the Shuttle is of this order of

magnitude.

4.1. Case 1: Heated from top

When the fluid is heated from above Ra is less than

zero and d2 may be positive or negative. Consider now

only the case when d2 is positive. Going back to the

pendulum analog, this corresponds to the situation of

the bob hanging downward from the base plate and is

therefore inherently stable when the base plate is sta-

tionary. Now as Ra is decreased, the constant gravity

case becomes more and more stable. To see what hap-

pens as a time-dependent gravitational field is imposed

calculations are presented for the case of Pr ¼ 0:08 and

Ra ¼ �1000 and �2000 respectively. Observe then from

Fig. 4 that as Ra decreases so too does the region of

stability which is the reverse of what we would see in the

constant gravity case. This is a reasonable expectation

for when the gravity vector is reversed, the more nega-

tive Ra causes more instability. In other words as d2

becomes larger the region of stability becomes smaller.

And, this should not surprise us if we consider the

pendulum analog. In that case d2 ¼ 4g=lx2 where l is

the length between the pivot and the bob.

A larger g or shorter l does indeed make the motion

unstable. Fig. 4 also shows the stability region for a

Pr ¼ 7 and Ra equal to �1000 and �2000:0 respectively.

Observe that the stability region increases by increasing

the value of Pr for a given frequency. This is also un-

derstandable given that an increase in Prandtl number

implies an increase in the kinematic viscosity and going

Fig. 4. Stability curve for single frequency gravity modulation

with Pr ¼ 0:08, 7 and Ra ¼ �1000 and �2000. The fluid layer is

heated from the top.

Fig. 5. Stability curves for two frequency gravity modulation

with Pr ¼ 0:08, 7 and Ra ¼ �1000 and �2000 respectively. The

fluid layer is heated from the top.
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back to the formula for d2 when Pr is high we see that d2

becomes less positive as m increases. Increasing Pr when

Pr is high therefore implies that mechanical perturba-

tions die out quickly. The double frequency calculations

were done assuming that gac1 ¼ gac2 ¼ gac and that

x2 ¼ 2x1. Fig. 5 shows the effect of the double fre-

quency for Pr ¼ 0:08 and Pr ¼ 7 when Ra ¼ �1000 and

�2000 respectively. What you now observe is that the

region of stability has decreased. Here too the problem

has an analogy to the stable pendulum. A second fre-

quency, in that case, decreases the region of stability as

well. An increase in Prandtl number once again causes a

decrease in the stability region and is manifested by an

increase in gac1, all of this showing the effect of the ki-

nematic viscosity in delaying the instability.

We now move to the second case, that is the situation

of the fluid heated from below and show some startling

differences.

4.2. Case 2: Heated from bottom

Calculations were done for Rayleigh numbers (Radc)

of 657.4, 800, 1000, and 2000 for a variety of Prandtl

numbers. In our calculations we have fixed the wave

number to be p=
ffiffiffi
2

p
. The values of gdc were fixed at

13:1lg and 46:0lg (1lg ¼ 9:8 
 10�6 m2/s) for Pr ¼ 0:08

and 6.94 respectively. These values were chosen based

upon the real time gravity environment data acquired

from a past US space shuttle mission viz., STS 87. A

Rayleigh number of 657.4 (< 27p4=4) corresponds to a

stable situation when the steady case is considered. By

introducing oscillations with a single frequency the layer

is made unstable but only at high amplitudes. Contrast

this with the case of Ra ¼ 800 as seen in Fig. 6. This

corresponds to an unstable situation in the steady case

and indeed remains unstable for small amplitudes when

a time-dependent g is imposed. This is also seen for the

cases of Ra ¼ 1000 and 2000 as shown in Figs. 7 and 8.

Note that much like the pendulum analog when the

amplitude of motion is increased, stability is obtained

whereas for very high amplitudes instability is regained.

Once again an increase in Prandtl number shows an

increase in the stability regions even though this increase

is very nominal. Moving onto the two frequencies case,

Figs. 9 and 10 are the stability diagram for Ra ¼ 1000

and 2000 and Pr ¼ 0:08 and 7. In Fig. 9 gac2 ¼ 0:2 and

x2 ¼ 15 while gac1 is computed for different values of x1

such that the neutral stability point is reached. The value

Fig. 6. Stability curves for single frequency gravity modulation

with Pr ¼ 0:08 and Ra ¼ 657:4, 800. The fluid layer is heated

from the bottom.

Fig. 7. Stability curves for single frequency gravity modulation

with Pr ¼ 0:08 and Ra ¼ 1000, 2000. The fluid layer is heated

from the bottom.
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of gac2 ¼ 0:2 and x2 ¼ 15 corresponds to a point in the

unstable region for a single frequency case and it is the

purpose of the figure to show how the addition of a

second frequency affected the stability when one of the

frequencies and the accompanying amplitudes of the

modulation are inherently unstable. The dominant fea-

ture that stands out is that the stability region increases

substantially by introducing a second frequency. This

unusual result means that while the system can be un-

stable to the individual frequencies it can be stable when

both act in concert with each other. Notice in fact when

x1 ¼ 15 the frequencies coincide and the stability

changes sharply. This result should not be surprising

when the pendulum analog is reconsidered. If an un-

stable pendulum gains stability at a certain amplitude

and frequency then the introduction of a second fre-

quency can actually reinforce the stability.

5. Conclusions and closing comments

In this study we have analyzed the thermal stability

of a fluid layer subject to a double frequency time-de-

pendent gravity field both analytically as well as by way

of a calculation. Regardless of whether the fluid layer is

heated from above or below we show that the effect of

an increasing Prandtl number is to increase the region of

stability thereby showing that the problem is mechani-

cally driven. The fluid layer becomes unstable as it is

heated from above with larger temperature gradients

and this result is justified once the analogy with the sim-

ple pendulum is made clear. We also find that the fluid

layer when heated from below becomes more stable

when a second frequency is added to the first even

though it might have been unstable to each frequency on

its own.

Before we close, it is worthwhile giving an applica-

tion to this study. An example where this work would

be useful is in the determination of oxygen diffusivity

in liquid tin by electrochemical titration [7]. Diffu-

sion measurements involve concentration gradients and

often generate convective instabilities that interfere

with these measurements. Low-gravity experiments

would be a way to reduce convective effects but even in

outer space the gravity level is not constant but time

dependent. It is therefore necessary to see the effect of

Fig. 8. Stability curves for single frequency gravity modulation

with Pr ¼ 7:0 and Ra ¼ 1000, 2000. The fluid layer is heated

from bottom.

Fig. 9. Stability curves for two frequency gravity modulation

with Pr ¼ 0:08 and Ra ¼ 1000, 2000. The gac2 was fixed to 0.2

m/s2 at the cyclic frequency of 15 rounds per second. The fluid

layer is heated from bottom.
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time-dependent gravity fields on the convective insta-

bility.

Acknowledgements

Support via NASA grant NAG 8-1679 and National

Science foundation via grant CTS 93-07819 is gratefully

acknowledged.

References

[1] S. Chandrashekhar, Hydrodynamic and Hydromagnetic

Stability, Dover, New York, 1961.

[2] P.M. Gresho, R.L. Sani, Effect of gravity modulation on the

stability of a heated fluid layer, J. Fluid Mech. 40 (1970)

783–806.

[3] B.T. Murray, S.R. Coriell, G.B. McFadden, The effect of

gravity modulation on solutal convection during directional

solidification, J. Cryst. Growth 110 (1991) 713–723.

[4] B.V. Saunders, B.T. Murray, G.B. McFadden, S.R. Coriell,

A.A. Wheeler, The effect of gravity modulation on thermo-

solutal convection in an infinite layer of fluid, Phys. Fluid A

4 (6) (1992) 1176–1189.

[5] G.Z. Gershuni, D.V. Lyubimov, Thermal Vibrational

Convection, John Wiley, New York, 1998.

[6] A.H. Nayfeh, Introduction to Perturbation Techniques,

Wiley International, New York, 1980.

[7] B. Sears, T.J. Anderson, R. Narayanan, A.L. Fripp,

Detection of solutal convection during diffusivity measure-

ment of oxygen in liquid tin, Metall. Trans. 24B (1) (1993)

91–100.

Fig. 10. Stability curves for two frequency gravity modulation

with Pr ¼ 7:0 and Ra ¼ 1000, 2000. The gac2 was fixed to 1.25

m/s2 at the cyclic frequency of 15 rounds per second. The fluid

layer is heated from bottom.

4020 P.K. Shukla, R. Narayanan / International Journal of Heat and Mass Transfer 45 (2002) 4011–4020


	The effect of time-dependent gravity with multiple frequencies on the thermal convective stability of a fluid layer
	Background and physics
	The model for the fluid layer
	The `phi ' equation with a double frequency
	Discussion
	Case 1: Heated from top
	Case 2: Heated from bottom

	Conclusions and closing comments
	Acknowledgements
	References


